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1 Statement of the Problem Studied 

The equipment acquired under this DURIP grant is aimed for research in statistical automated tar- 
get recognition (ATR) using remotely sensed images. We have focused on the problem of recognizing 
(known) targets from their infrared and video images. In addition to the variability associated with 
targets, their pose, motion, and thermal profiles, the targets are assumed to be present in cluttered 
environments. Taking a statistical approach, our main goal was to derive efficient probability mod- 
els (analytical wherever possible) for these sources of variability in the observed images. Having 
obtained such probability models, we have derived algorithms for inferences and also quantified the 
algorithmic performance for specific ATR situations. The key idea behind this research is to isolate 
and model different physical variables individually, and derive models/estimators for each one of 
them. These results will be utilized towards the theory of a general purpose ATR algorithm which 
continues to be our research focus. 
In particular, our research focused on the following aspects of ATR: 

1. FLIR ATR: Infrared images exhibit a large variability due to the varying thermal states of 
the targets. Modeling the thermal states as scalar temperature fields on the target surfaces, 
we have developed a regression framework for predicting arbitrary FLIR images of known 
targets in partially observed but otherwise unknown thermal states. This tool can be used 
for constructing/refining image database or directly for FLIR ATR. 

2. Clutter Modeling and Classification: Modeling the clutter pixels remains the most chal- 
lenging component of the statistical ATR. Targets of interest seldom occur alone in the scenes 
and the presence of other objects leads to confusing clutter. We have derived coarse, tractable 
probability models for these clutter pixels and have applied them to classifying the clutter- 
type for natural images. 

3. Bayesian Inferences for ATR: Once we have the probability models, the next task is 
to derive algorithms for inferences under these models. Since the ATR representations take 
values on manifold-valued space, we need a theory of inferences on such parameter spaces. 
We have built upon the previous work [15] to develop algorithms for estimation/tracking 
of manifold-valued parameters for ATR. Specifically, we have derived a nonlinear filter for 
tracking stochastic processes on (finite dimensional) Lie groups and their quotient spaces. 

4. Performance Analysis of Bayesian ATR: Any inference procedure should be accompa- 
nied by its performance specifications, and we have derived metrics for analyzing performance 
for the following ATR tasks: (i) estimation of nuisance parameters such as pose, location, 
thermal state etc., and (ii) selection of maximum a-posterior hypothesis (target type) in the 
presence of estimated nuisance parameters. Using asymptotic arguments we have related the 
performance in target recognition to the performance in pose estimation in an analytical form. 
[3,5] 

2 Summary of Scientific Progress and Accomplishments 

Next we describe the obtained under these items. 

2.1    Prediction of IR Images 

A recent meeting of the ARO strategy meeting shortlisted a number of high-priority research areas. 
In the area of knowledge base acquisition and refinement, it was stated that "Some means 



of (database) construction and refinement on the fly .. is required. Generation of relevant multiple 
viewpoints for retraining of ATR functionality ... is desired". 

To pursue database updating and "rapid retraining", we have developed a framework for pre- 
dicting IR images of a known target in a new thermal state. We assume a prior database (mostly 
incomplete in terms of the target's thermal states) of target profiles and some partial observation 
of a new thermal state. The goal is to utilize the new observation, along with the prior database, 
to generate estimates of IR images from all other angles, in order to update the database. In our 
approach, the thermal states of the target are represented via scalar temperature fields and the 
prediction task becomes that of estimating the unobserved parts of the field, using the observed 
parts and the past patterns. This estimation is performed using regression models for relating the 
temperature variables, at different points on the target's surface, across different thermal states. A 
linear regression model is applied and experiments have been conducted using a laboratory target 
and a hand-held IR camera. Shown in the upper-middle panel of Figure 1 is the target used in pre- 
liminary experiments; the upper-left panel shows its CAD model and the upper-right panel shows 
an example IR image. We have modeled IR images as Gaussian random fields: the mean field is 

Figure 1: Top panels: CAD model (left), a video picture (middle), and an IR image (right) of the 
target used in experiments. Bottom panels: an IR image (left) and histograms (middle, right) of 
pixels in two homogeneous regions of that image. 

given by the projection of 3D target temperature field onto the 2D image space. The histograms, 
in the bottom panels of Figure 1, display the pixel variations in two homogeneous regions of an IR 
image (bottom left panel), and hence, support the choice of a Gaussian model for the sensor noise. 

Instead of storing past IR images, we propose organizing past database in form of scalar tem- 
perature fields, each associated with a distinct thermal state. Hence, texture mapping of IR 
images into (scalar) temperature fields becomes important. Observed IR images, of a target in a 
fixed thermal state, from multiple perspectives, are mapped using a (commercial) software onto the 
polygonal representation of its surface. Given this texture mapping, one can synthesize an IR image 
of this target in this thermal state, from an arbitrary perspective. Shown in the bottom panels 
(Figure 2) are some example images synthesized for a thermal state captured by six IR images (two 
of them are shown in the top panels). Using this procedure, we can generate a temperature field 
(via a texture map) for any previously observed thermal state of the target. Repeating this process 
for a number of thermal states, we obtain temperature fields for a number of previously observed 
thermal states; A principal component analysis of these fields result in a compact prior database 
of the thermal states, for use in prediction of IR images associated with the future thermal states. 

Now consider the problem of estimating IR images, from multiple viewpoints, of a target in a 
partially observed thermal state. To setup the prediction experiment, the target was imaged in a 



Figure 2: Texture mapping of IR images on the target surface to estimate the temperature field. 
Top panels: original IR images, bottom panels: synthesized IR images using texture maps. 

Figure 3: Upper panels: IR images of the target at prior thermal states, denoting the prior database 
Bottom panels: Estimation of an IR image using a noisy sub-image of the original. 

new thermal state. In order to study the algorithmic performance, we have added white Gaussian 
noise (with a standard deviation of a) to this image, in addition to the already existing sensor 
noise. We have simulated partial observations by selecting a sub-image from the original image and 
then using it in our regression algorithm to compute the remaining thermal field. Shown in the 
bottom left panel of Figure 3 is an image of the target in the true underlying thermal state and 
the same image with added white Gaussian noise is shown in bottom, second panel. The selected 
sub-image is shown in bottom, third panel and the estimated image is shown in bottom right. To 
analyze estimation performance, we compute the matrix 2-norm between the estimated and the 
original image (alternative performance metrics can be substituted instead). Let p denotes the 
fraction of the pixels selected in the sub-image, compared to the original image. Shown in Figure 
4 is the plot of expected relative error versus a, for p = 1.12%, 2.93%, 9.21%, and 15.29%. As 
expected, the relative error decreases as p increases and the error increases with a. If the estimated 
temperature field is found to be significantly different from the current database, it can be included 
in the database for database updating. This idea can also be used for database refinement, where 
a subset of the prior database is selected according to the current observations. 

For details regarding this approach, please refer to the article [14]. This research is being- 
performed in collaboration with Dr. Richard Sims of AMCOM and a graduate student, Brian 
Thomasson, of FSU. 



Noise Level v s Relative Error 
0.7 

06 - 

0.5 - 

J2 ^-~~~~r~^          ,-'      ,, " 
<E 03 

/■,'.''' 

02 

.■■]„ -■'-i-'•?'' 

^ ^ s > > 
— * * j , i               i               i               i               i 

10 20 30 40 50 60 70 80 90 100 
Noise Level (in terms ol standard deviation) 

Figure 4: Variation of estimation error in IR image prediction versus the additive noise standard 
deviation in observed image, for four different values of p. 

2.2    Clutter Modeling and Classification Metrics 

Given an observed image of a target, imaged in a cluttered environment, one would like to charac- 
terize the clutter to the extent that it improves the ATR performance. Some knowledge of clutter 
type, whether it is grass, buildings, trees, or roads, can help improve the task of target recognition. 
We have derived coarse analytical models for representing image spectra and imposed L2 metric on 
them to quantify image differences. An emerging approach, to representing and analyzing images, 
is to decompose them into their spectral bins, i.e. perform band-pass filtering of the images into 
different frequency bands, and then to study the statistics of these components. Studies (e.g. [1]) 
have shown that the human visual system also decomposes images into such frequency components. 
For implementation, these components are computed using linear filters, each tuned to a different 
frequency, scale and orientation; a formal framework for such spectral analysis was introduced in 
Gabor [2]. The marginal densities (histograms) of the components have often been chosen as the 
sufficient statistics, and have been successfully applied to modeling, analysis and even synthesis 
of homogeneous textures [7, 16, 6]. Let F^\ j = 1,2,..., k, be the linear filters that are used to 
decompose an image / into its spectral components. In this paper, we have utilized the Gabor 
filters although other such filters can also be used. We require that the filters be chosen such that 
the spectral components have marginal densities that are: (i) unimodal with a mode at zero, and 
(ii) symmetric around zero. Then, /(■?') = I * F^ is a spectral component of the image /, where 
* denotes the 2D convolution operation. We are interested in an analytical form that models the 
probability density of the pixels in 1^. Mathematically, an image pixel is modeled as 

I(z) = J2ai9iiz -Zi);z = [x y]   ,zi = [xi V: 
lT 

(1) 

Here z is the variable for pixel location, gi is a profile of a randomly chosen object, and a^s are 
random weights associated with different profiles. Oj's are modeled as i.i.d. standard normal and 
the locations ZJ'S as modeled as samples from a 2D Poisson process, with a uniform intensity A 
(independent of a;'s). Consider a pixel in the component /(•", 

I^(z) = £ aig\3\z - Zi) ,   where g\j) = F® * 9i (2) 



I^\z) is a random variable and we want to characterize its randomness. The conditional density 
oil^(z), given the Poisson points {ZJ} and the profiles {&}, is N(0,u), where the random variable 

u is defined as the quantity Y^iidi   \z ~ zi))2- 
For general cases, with completely unknown objects in the image, a broad family of distri- 

butions, not relying on a prior knowledge of the gi's, is required, u has some distribution on 
the positive real line and, motivated by empirical studies, we model it by a scaled F-density: 
fu(u) = -p^r(it/c)p~1 exp(—u/c);p, c £ M+, where p is called the shape parameter and c is called 
the scale parameter of u. Now we can integrate over the Poisson and profile variation, and derive 
the marginal density of I^\z). This density is given by: 

Theorem 1  Under the proposed model, the density function of I^\z) is: for p > 0 and c > 0, 

1/7rr(p)(2c)2 + 4 2 

where K is the modified Bessel function. 

We call this structure of / as a Bessel form. Let V denote the set of all such Bessel forms: 
V = {f(-;p,c)\c,p e 1R+}. As stated in [4], the shape parameter p provides some idea about the 
nature of the component 1^ (and hence about I). For p = 1, f(t; 1, c) is the density of a double 
exponential or the exponential model. In general, f(t;p, c) is thept/l convolution power of the double 
exponential density. If p > 1, we call it super-exponential model, and we get closer to the Gaussian, 
especially if p » 1. On the other hand, if p < 1, we call it sub-exponential model, the cusp of the 
density at zero becomes more pronounced. 

How to estimate a Bessel form for a given spectral component 1^? Since the probability 
density / takes a parametric form, with parameters p and c, this task reduces to that of estimating 
p and c under an appropriate criterion. We have utilized a maximum-likelihood estimation (MLE) 
procedure to estimate p and c, according to: 

3 variance (1^) ,.. 
" = H  , (4) 

kurtosis (J^) -3 V 

where variance and kurtosis are the sample variance and the sample kurtosis of the elements of 
lti\ respectively. We illustrate some estimation results for natural images. 

• Shown in the top panels of Figure 5 are some real images taken from the Groningen database. 
The middle panels display their specific filtered forms (or the spectral components) for Gabor 
filters chosen at arbitrary orientations, and the bottom panels plot the marginal densities. On 
a log scale, the observed densities (histograms) are plotted in broken lines and the estimated 
Bessel forms (f(x;p,c)) are plotted in solid lines. 

• Shown in Figure 6 is another example. For the image shown in the top panel we have 
computed the observed and the estimated marginals for a number of Gabor filters. The 
middle panels plot the marginals for different filter orientations (9 = 30,60,90,120, and 150 
degree) while keeping the scale fixed at a = 4.0, and the bottom panels are for different filter 
scales (a = 1,2,3,4, and 5) keeping the orientation fixed at 6 = 150. 

In our experiments, we have found a remarkable fit between the observed and the estimated 
marginals, for a large set of filtered natural images. 

To quantify the distance between two Bessel forms, we have chosen the L2-metric on V. It is 
possible that other metrics, such as the Kullback-Leibler divergence or the L1 metric, may be more 



Figure 5: Images (top panels), their spectral components (middle panels), and the marginal den- 
sities (bottom panels). The observed densities are drawn in broken lines and the estimated Bessel 
forms are drawn in solid lines. 

appropriate. L2 is a common choice for search/optimization problems and also leads to a relatively 
simple expression. The main drawback of this choice is that the Bessel forms are not in L2 for 
p < 0.25 and therefore the metric is not applicable to those cases. 

Theorem 2  The L2-distance between the two Bessel densities, parameterized by (pi, ci) and (p2, c2), 

respectively, is given by: for pi,p2 > 0.25, Ci,C2 > 0, 

d[pi,ci,p2,c2) = 
1 

2V2TT 
r(a5)fe&) + «^ 2g{pl+p2),cl     

N 

/el c2 j 
(5) 

where Q[p) = T-^f1 and T = F({Pl + p2 - 0.5),p2;Pi + V2\ 1 - %)  (F is the hypergeometric 

function). 

Theorem 1 provides a metric between two Bessel forms, or between two spectral marginals. It 
can be extended to a metric on the image space as follows. For any two images h and J2, and the 
filters FW, ..., #), let the parameter values be given by: {p[J\c[j)) and (#, c\])), respectively, 
for j = 1, 2,... , K. Then, the L2-distance, between the spectral representations of the two images, 

is defined as: 

di(hJ2) = 
K 

E^'U'U^)2 
(6) 

Consider the images of natural clutter shown in Figure 7. For a simple illustration, let the images 
in the top row be the training images that are already classified, and the bottom row be the images 
that are to be classified. Using nine small-scale Gabor filters {K = 9), for nine different orientations 
at a fixed scale, we have computed the pairwise distances d/'s. These distances are shown in the 
table below: 



Figure 6: Plots of observed and estimated marginals (on a log scale) of the spectral components of 
a given image (top panel). Middle panels depict the marginals for different filter orientations: 30, 
60, 90, 120, and 150, while the bottom panels are for different filter scales: 1, 2, 3, 4, and 5. 

h 
h 
h 
h 
h 
h 
h 
h 
h 
ho 

h h h ho 
0.00 
0.51 
0.61 
0.63 
0.59 
0.64 
0.85 
0.92 
0.74 
0.70 

0.51 0.61 
0.00 0.59 
0.59 0.00 
0.61 0.46 
0.60 0.69 
0.65 0.72 
0.86 0.89 
0.93 0.96 
0.71 0.67 
0.67 0.62 

0.63 0.59 
0.61 0.60 
0.46 0.69 
0.00 0.71 
0.71 0.00 
0.74 0.48 
0.90 0.81 
0.97 0.89 
0.63 0.78 
0.57 0.76 

0.64 0.85 
0.65 0.86 
0.72 0.89 
0.74 0.90 
0.48 0.81 
0.00 0.78 
0.78 0.00 
0.87 0.76 
0.81 0.94 
0.78 0.92 

0.92 0.74 0.70 
0.93 0.71 0.67 
0.96 0.67 0.62 
0.97 0.63 0.57 
0.89 0.78 0.76 
0.87 0.81 0.78 
0.76 0.94 0.92 
0.00 0.99 0.98 
0.99 0.00 0.48 
0.98 0.48 0.00 

Using the nearest neighbor approach, and the metric dj listed in the table, we can correctly 
associate the test images with the corresponding training images. With a careful choice of filters, 
one can view dj as a perception metric, i.e. a metric that seems to match well with our perception. 
To illustrate the classification of clutter types, we have plotted a clustering chart in the left panel 
of Figure 8 using the dendrogram function in matlab. This function generates a clustering tree 
for points in image space when their pairwise distances are given. The clustering of I\ with I2, h 
with I4, and so on, demonstrates the success of this representation and the metric chosen. For a 
quick comparison, a dendrogram clustering, using the Euclidean distances on the image space (i.e. 
\\h - h\\2, where || • || is the Frobenious norm), is shown in the right panel. Clearly, the Euclidean 
metric does not provide a satisfactory clustering. These results show that through Gabor filtering, 
the Bessel forms retain enough information to associate similar objects, to classify clutter type in 

cluttered ATR. 
For details please refer to the articles [4, 12]. This research is being performed in collaboration 

with Prof. Xiuwen Liu of FSU and Prof. Ulf Grenander of Brown University. 
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Figure 7: Ten natural images from the Groningen database: top row are the training images and 
bottom row are the test images. 
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Figure 8: Dendrogram classification of images shown in Figure 7. Left panel: using image metric 
di, right panel: using Euclidean metric on image pixels. 

2.3    Bayesian Filtering for Estimation/Tracking on Manifolds 

In ATR and many other signal/image processing applications, the parameters of interest are of- 
ten constrained to take values on manifolds. In this research, we have addressed the problem of 
tracking manifold-valued parameters using a nonlinear, non-Euclidean filtering approach. To estab- 
lish a filtering framework, the system evolution is represented by trajectories on a manifold and a 
dynamics-based state equation is imposed on that space. This prior dynamic model combined with 
a likelihood function forms a time-varying posterior density on the manifold, to allow for Bayesian 
filtering and estimation. Using a sequential Monte Carlo method, or particle filtering, a recursive 
procedure is derived for propagating an estimate of this posterior (through random samples) in 
time. Posterior samples are then utilized to estimate the unknown parameters. 

Let S be the manifold on which the parameter of interest lies: for rigid target tracking S is 
the Euclidean group of rigid motions, and for principal component tracking S is the Grassmann 
manifold. For discrete observation times t — 1,2,..., the system trajectory is given by the sequence 
s\,S2,... € S, and let the observation sequence be given by Yi,Y2,.... Given the observation 
sequence Y\-t = {Y\,..., Yt}, the goal is to estimate the sequence si:t = {s\,..., st} € 5* using a 
minimum mean-squared error (MMSE) criterion.  The nonlinear filtering equations are given by, 

10 



for t = 2,3,... 

f(st\Yl:t^)   = //(st|st_i)/(st_i|y1:t_i)7(dst_i) , 
Js 

f(st\Y \:t) 
f(Yt\st)f(st\Yv. t-l, 

f{Yt\Yl:t-l) 

The filtering problem was studied for the following two applications: 

(7) 

(8) 

1. Face Tracking on Euclidean Group: As an example of rigid tracking, we are interested in 
tracking of human faces from a video sequence. Using a deformable template approach, the 
target motion is tracked by tracking the rotations and translations (SE(3), special Euclidean 
group) that best match the synthesized images to the observed images. Shown in Figure 9 is 
an example of our face tracking software. One frame of the observed video sequence is shown 
in bottom right panel, and the 3D template of the face is rendered in top left. This template 
was generated using Minolta vivid700 3D scanner, and the scanned polygonated surface is 
shown in top-right panel. The likelihood function, used in the tracking, is proportional to 
the norm of the difference image between the observed and the hypothesized (an example is 
shown in bottom-left). 

Figure 9: Illustration of face tracking: bottom-right is the video sequence for tracking, top-left is the 
rendering of out 3D face template, top-right is the polygonal surface of the template, bottom-left 
the difference image that provides a cost function for tracking. 

This research is being performed in collaboration with Prof. Gordon Erlebacher of FSU and 
a graduate student Curt Hesher. 

2. Principal Component Tracking on Grassmann Manifold: Consider the problem of 
principal subspace tracking in array signal processing, using a narrowband, uniform linear- 
array (ULA) consisting of n elements at half-wavelength spacing each. Furthermore, assume 

11 



that there are m signal transmitters, and the sensor output is modeled according to classical 
narrowband signal model [13]. The novel parts of this research are: (i) Posing the subspace 
tracking problem as that of inferences about trajectories on complex Grassmann manifold, 
(ii) Establishing the notion of geodesies and motion variables on Grassmannians, in order to 
impose dynamical models. This framework allows for learning the dynamical model from the 
past trajectories and use them for tracking future ones, (iii) Using a dynamic model, along 
with an observation model, to treat subspace tracking as a problem in nonlinear filtering, 
(iv) Application of a sequential Monte Carlo algorithm to approximate the time-varying 
posterior density on the Grassmannian. In addition to estimating MMSE subspaces, this 
sampling also allows for the estimation of expected errors and other posterior moments, for 
performance diagnostics. Together, these contributions lead to a fundamental and widely 
applicable algorithm for subspace tracking or, more generally, for tracking on quotient spaces 
of finite-dimensional Lie groups. 

Figure 10 displays the tracking results for two datasets. Each plot shows the estimation er- 
ror \\st - Si|| for three different estimation procedures. First, the error associated with the 
instantaneous maximum-likelihood estimate (MLE), obtained by SVD of the instantaneous 
covariance matrix, is shown in the broken line. The error resulting from an adaptive proce- 
dure, relying on the SVD of a covariance matrix (using data over a sliding window) is shown 
in the dotted line. Finally, the estimation error for tracking from our method is plotted in 
bold. 

Estimation Potlof manco Eitimalion Perlornwiea 

Figure 10: These panels plots the error in subspace tracking (||Pt — Pt\\) as a function of t for: (i) 
MLE (broken line), (ii) adaptive tracking (dotted line), and (iii) Bayesian tracking (solid line). 

For details, please refer to the articles [9, 11, 10]. This research is being performed in collab- 
oration with Prof. Eric Klassen of Department of Mathematics, FSU. 

2.4    Asymptotic Bayesian ATR Performance Analysis 

To recognize a target, estimation of the associated target attributes, such as pose, motion, lighting, 
and thermal profile, becomes essential. Target recognition is performed through Bayesian hypoth- 
esis testing; for a given observation the likelihood ratios are compared to the ratio of priors and a 
hypothesis is selected. In a binary case, for an observed image /, the Bayesian hypothesis-testing 

12 



Hl 
problem is:  p J„H   ^   p)h°   = v.  In the presence of nuisance parameters, such as pose and lo- 

Ho 
cation, p(I\Hi), i = 0,1 is defined via the integral p(I\Hi) = fs p(I\s, Hi)p(s\Hi)7(ds), where s is 
a nuisance parameter.  In most practical situations, the integrand is too complicated to be com- 
puted analytically. To obtain analytical expressions, which are often more attractive, asymptotic 
approximations using Laplace's method has been derived. 

Lemma 1 For any a & A, a uniform prior (prior is given by Haar measure) and an asymptotic 
situation (a -> 0), the likelihood function p{I\oe) is given by 

where E = —log(p(I\s,H), s* — argmins£5 E(s, a) and E is the Hessian of the function E with 
respect to s. 

This approximation leads to an analytical form for the probability of error in binary target recog- 
nition. 

Theorem 3 Assuming the VIDEO sensor model with additive Gaussian noise, the probability of 
misclassification of the first kind (selecting H\ when HQ is true with parameter so) is given by 
J-  exp (—K

2
/2), where 

- = (ß logM - § log df}ff°
{

(
S0,^\ +^,+R«i (*i) - *ao (*<>)) ,andß= \ • 

V 2       det(£ai(si,0))      2/3 ; ^l\^\\-2p 

Shown in Figure 11 are the plots for the probability of identifying truck when the actual target 
used in generating I was tank, using the VIDEO sensing model. For comparison, the experimental 
approximation of this error probability is plotted along with the analytical approximation of The- 
orem 1. At each noise level, the experimental probability is computed from multiple realizations of 
additive noise, performing nuisance integration on S = SO(2) using trapezoidal method for each 
realization, and finding the relative frequency of incorrect decisions. The solid line plots the ana- 
lytical expression and the broken line plots the experimental approximation. Shown in the other 
three panels are the sample VIDEO images of the tank at the noise levels given by ß = 0.01,0.02 
and 0.1. 

3    List of Equipment Acquired with this Grant 

The following items were purchased through this DURIP funding. 

1. One SGI Octane workstation. 

2. One Toshiba laptop computer 

3. One Canon Digital Camera 

4. Three desktop Dell personal computers 

5. One Gateway desktop personal computer 
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Figure 11: Top-left panel: the curves denote the log-probability of recognizing the truck when the 
tank is the true target (at certain pose), comparing the experimental results (broken line) with 
analytical estimates (solid line). The other three panels show VIDEO images of tank at noise levels 
given by ß = 0.01 (top-right), 0.02 (bottom-left), and 0.1 (bottom-right). 

6. Two Epson 800 inkjet printers 

7. One HP b/w laser printer 

8. One Panasonic TV/VCR combination. 

9. Data cartridges, video tapes, computer cables, hard drives, SGI motherboard repair, SGI 
memory, 

10. UPS power backup for SGI and other computers. 

11. Splus and other statistical software. 

12. Books and software manuals. 

In addition to this DURIP award, we also received funding for acquiring equipment from NSF MRI 
award and the FSU Research Foundation. Combining this support, we have developed state of 
the art laboratory for research in image understanding. Named Laboratory for Computational 
Vision, it includes researchers from Statistics and Computer Science. Details about this laboratory 
can be obtained by visiting http://lcv.stat.fsu.edu. During this reporting period, our research has 
been benefited greatly from a number of imaging devices that were acquired for our Laboratory 
of Computational Vision. We have purchased two Minolta vivid700 three-dimensional scanners 
that can generate polygonal meshes (discretized surface) of the laboratory targets used in ATR 
experiments. These scanners have been used in generating CAD models for IR image prediction, 
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and for human face tracking from video sequences. We have also acquired a Raytheon PalmIR PRO 
thermal imager that operates in 7-14 urn spectral range and generates images of size 320 x 240 
in 8-bit BMP format at a (typical) sensitivity level of lOOmK. The scene temperature range for 
this camera, relative to the background, is 500° C. Additionally, we have also purchased two high- 
performance Olympus digital cameras, and a Sony digital video camera, that are being used in 
generating textures, natural images, and video sequences needed in several ongoing projects in the 
lab. 

4    List of Publications 

1. List of Papers Published in Peer-Reviewed Journals 

(a) Probability Models for Clutter in Natural Images, IEEE Transactions of Pattern Anal- 
ysis and Machine Intelligence, vol 23, number 4, April 2001. (U. Grenander and A. 
Srivastava) 

(b) Asymptotic Performance Analysis of Bayesian Object Recognition, IEEE Transactions 
on Information Theory, vol 46, number 4, July 2000. (U. Grenander, A. Srivastava, and 
M. I. Miller). 

(c) A Bayesian Approach to Geometric Subspace Estimation, IEEE Transactions on Signal 
Processing, vol 48, number 5, May 2000. (A. Srivastava) 

(d) Accepted for Publication, Jump-Diffusion Markov Processes on Orthogonal Groups 
for Object Recognition, to appear in Journal of Statistical Planning and Inference. (A. 
Srivastava, G. Jensen, U. Grenander, and M. I. Miller). 

(e) Hilbert-Schmidt Bounds on Matrix Lie Groups for ATR, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol 20, number 8, August 1998. (U. Grenander, M. 
I. Miller, and A. Srivastava) 

2. List of Papers Submitted to Peer-Reviewed Journals 

(a) Analytical Probability Forms for Modeling Image Spectra, IEEE Transactions on Pat- 
tern Analysis and Machine Intelligence, submitted June 2001. (A. Srivastava, X. Liu, 
and U. Grenander) 

(b) Geometric Nonlinear Filtering for Subspace Tracking, in second review at IEEE Trans- 
actions on Signal Processing, June 2000. (A. Srivastava and E. Klassen) 

(c) Monte Carlo Extrinsic Estimators for Manifold-Valued Parameters, submitted to a spe- 
cial issue of IEEE Transactions on Signal Processing, December 2000. (A. Srivastava 
and E. Klassen) 

3. List of Papers Published as Book Chapters 

(a) Bayesian Automated Target Recognition, Handbook of Image and Video Processing, Ed- 
itor: Alan Bovik, Techbooks, Boston, 2000. (A. Srivastava, M. I. Miller and U. Grenan- 
der) 

(b) Monte-Carlo Techniques for Automated Target Recognition, Sequential Monte Carlo 
Methods: Theory and Applications, Editors: Gordon, Doucet, and DeFreitas, 2000. (A. 
Srivastava, A. Lanterman, U. Grenander, M. Loizeaux, and M. I. Miller). 
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4. List of Papers Published in Non-Peer-Reviewed Journals/Conference Proceed- 
ings 
A. Srivastava 

(a) A Compact Probability Model for Natural Clutter, International Conference on Image 
Processing, October 2001, Thessaloniki, Greece, (with U. Grenander) 

(b) Analytical Models for Reduced Spectral Representations of Images, International Con- 
ference on Image Processing, October 2001, Thessaloniki, Greece, (with X. Liu and U. 
Grenander) 

(c) A Regression Model for Prediction of IR Images, SPIE Aerosense, Orlando, FL, April 
2001. (with B. Thomasson and S. R. F. Sims) 

(d) Bayesian Filtering for Tracking Pose and Location of Rigid Targets, SPIE Aerosense, 
Orlando, FL, April 2000. 

(e) Asymptotic Analysis of Pattern Theoretic Object Recognition, SPIE Aerosense, Or- 
lando, FL, April 2000. (with M. Cooper). 

(f) A Nonlinear Filtering Method for Geometric Subspace Tracking, IEEE Sensor Array 
and Multichannel Processing workshop, Boston, March 2000. 

(g) Jump-Diffusion Processes on Matrix Lie Groups for Bayesian Inference, IEEE Signal 
Processing workshop on Higher Order Statistics, Caesaria, Israel, June 1999. 

5. List of Papers Presented at Meetings 
Anuj Srivastava: 

(a) Geometric Tracking on Quotient Manifolds, Annual meeting of Royal Statistical Society, 
Scotland, UK, July 2001. 

(b) Analytical Models for Spectral Analysis of Natural Images Annual meeting of Royal 
Statistical Society, Scotland, UK, July 2001. 

(c) Nonlinear Filtering for Tracking Pincipal Subspaces, AFOSR/AFRL workshop on Non- 
linear Filtering, Dayton, February, 2001. 

(d) ATR via Pose and Location Estimation, ARO CIS Annual Review Meeting, Baltimore, 
March, 1999. 

(e) Metrics for Recognizing Ground Targets, AMCOM/ARO workshop on Metrics for ATR, 
Huntsville, November, 1998. 

(f) ATR Performance Analysis and Sensor Fusion, ONR/GTRI workshop on Target Tracking 
and Sensor Fusion, Atlanta, June, 1998. 

Jayaram Sethuraman: 

(a) Further properties of Dirichlet measures, presented at the 1998 Luckacs Symposium 
"Statistics for the 21st Century" at Bowling Green University, Bowling Green, April, 
1998. 

(b) Further properties of Dirichlet measures, presented at the International Conference in 
Reliability and Survival Analysis at Northern Illinois University, Dekalb, May, 1998. 

(c) Specification of Joint Distributions from Marginal and Conditional Distributions, pre- 
sented an invited paper at the Symposium on Decision Theory at Purdue University, 
Lafayette, June, 1998. 
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(d) Conformation in Metric pattern Theory, presented at the Army Statistician's Conference 
at New Mexico State University, Las Cruces, October, 1998. 

(e) Conformation in Metric pattern Theory, presented at the meeting of the Florida Chapter 
of the American Statistical Association in Gainesville, February, 1999. 

(f) Reduction in Predictive Ability Caused by Discretization of the Independent Variable - 
Presented at the Army Statistics Conference at West Point, October, 1999. 

(g) Limit Theorems for Models in Pattern Analysis - Invited talk at the International Con- 
ference on Stochastic Processes and their Applications held at Cochin, India, December, 
1999. 

(h) Properties and Approximations of Dirichlet Processes at the 2000 Annual meeting of the 
Canadian Statistical Association in Ottawa, ONT, June, 2000. 

(i) Modeling Transmission Loss in a Large Network - presented at the Army Conference on 
Applied Statistics held at Rice University, Houston, October, 2000. 

5 Scientific Personnel Supported 

This DURIP funding was for acquisition of equipment and no personnel were support on this 
funding. Anuj Srivastava, Co-PI, and a graduate student Brian Thomasson are supported by a 
separate ARO grant DAAD19-99-1-0267. 

6 Reports of Inventions 

None. 
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A    Publications and Research Monographs 

Follwing published papers and the papers submitted to the journals are attached. 

1. Probability Models for Clutter in Natural Images, IEEE Transactions of Pattern Analysis 
and Machine Intelligence, vol 23, number 4, April 2001. (U. Grenander and A. Srivastava) 

2. Asymptotic Performance Analysis of Bayesian Object Recognition, IEEE Transactions on 
Information Theory, vol 46, number 4, July 2000. (U. Grenander, A. Srivastava, and M. I. 
Miller). 

3. A Bayesian Approach to Geometric Subspace Estimation, IEEE Transactions on Signal Pro- 
cessing, vol 48, number 5, May 2000. (A. Srivastava) 

4. Jump-Diffusion Markov Processes on Orthogonal Groups for Object Recognition, to appear 
in Journal of Statistical Planning and Inference. (A. Srivastava, G. Jensen, U. Grenander, 
and M. I. Miller). 

5. Hilbert-Schmidt Bounds on Matrix Lie Groups for ATR, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol 20, number 8, August 1998. (U. Grenander, M. I. 
Miller, and A. Srivastava) 

6. Analytical Probability Forms for Modeling Image Spectra, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, submitted June 2001. (A. Srivastava, X. Liu, and U. 
Grenander) 

7. Geometric Nonlinear Filtering for Subspace Tracking, in second review at IEEE Transactions 
on Signal Processing, June 2000. (A. Srivastava and E. Klassen) 

8. Monte Carlo Extrinsic Estimators for Manifold-Valued Parameters, submitted to a special 
issue of IEEE Transactions on Signal Processing, December 2000. (A. Srivastava and E. 
Klassen) 

9. Bayesian Automated Target Recognition, Handbook of Image and Video Processing, Editor: 
Alan Bovik, Techbooks, Boston, 2000. (A. Srivastava, M. I. Miller and U. Grenander) 
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